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The critical helix fluctuations in the cubic noncentrosymmetric helimagnet MnSi have been studied by
means of neutron small angle scattering and spin echo spectroscopy. To interpret the data, analytical formulas
for the susceptibility in real space were obtained for the first time. The calculations presented here are based on
the theory introduced in S. V. Grigoriev et al., Phys. Rev. B 72, 134420 �2005�. According to this theory the
temperature in the critical region can be divided into three parts with different types of chiral fluctuations: �i�
ferromagnetic like; �ii� isotropic helical; and �iii� anisotropic helical ones. The fluctuations increase in ampli-
tude with a randomly oriented but left-skewed pitch k upon approaching Tc=29 K. The scaling law of the
inverse correlation length � exhibits a crossover at ��k. The value of the critical exponent � is changed from
�1=0.40�6� in the vicinity of Tc to �2=0.68�1� at high temperatures. The critical behavior of the relaxation rate
� along the easy direction obeys the dynamical scaling ���Z��Z� with a crossover at the temperature where
��k with Z1=2.5�1� for the high temperatures and Z2=1.10�3� close to Tc. Fluctuations become 100% left
handed at the crossover point. The observed crossover is associated with the dominating influence of the
Dzyaloshinskii-Moria interaction near Tc, responsible for the chiral ordering.
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I. INTRODUCTION

The increasing number of publications devoted to the
magnetic and transport properties of cubic magnets with the
space group P213 such as MnSi and related compounds
FeGe, Fe1−xCoxSi is evidence of the importance of problems
related to this system: �i� the quantum phase transition under
applied pressure1–4 and �ii� a puzzle of the left-handed chiral-
ity of the spin helix.5–8 None of these problems is really
solved up to now, but even the magnetic phase transition at
ambient pressure is still a subject of debates.9–14 The com-
plex critical behavior is a result of the hierarchy of interac-
tions in this system �Bak-Jensen model�.15 Strong ferromag-
netic exchange �FE� is responsible for long-range magnetic
order. As it is well established, the antisymmetric
Dzyaloshinskii-Moriya interaction �DMI� caused by the lack
of the center of symmetry in Mn atomic arrangement gives
rise the spiral spin structure of this cubic magnets.15,16 The
DMI is isotropic itself due to the cubic symmetry, so the
helix vector k of the magnetic spiral in MnSi is fixed along
one of the cube diagonals by the weak anisotropic exchange
interaction �AEI�.15

The magnetic phase transition in this compound has been
identified as a first order in a very narrow temperature range
Tc�0.1 K. On the other hand, it is also recognized that the
first-order feature at Tc is just a minor part of the critical
behavior above Tc, which is marked by the rounded maxima
or minima of heat capacity, thermal expansion coefficient,
sound velocities and absorption, and the temperature deriva-
tive of resistivity.12,13

It was shown recently that the critical region above Tc has
two distinct parts: a pure chiral fluctuating part, which is
observable over a temperature range of one kelvin in the
vicinity of Tc and the paramagnetic partially chiral part at
higher temperatures.14 It was suggested that the first part was

a candidate for the spontaneous fluctuating skyrmion
phase,14 which was assumed in Ref. 17. Although based on
the modified Bak-Jensen hierarchy of the interactions, the
skyrmionic picture has a cylinderlike one-dimensional sym-
metry with the wave vector k perpendicular to the symmetry
axis. This spin texture obviously differs from the widely ac-
cepted helix-like spin texture that has a planelike two-
dimensional �2D� symmetry with the wave vector k perpen-
dicular to the plane. This helix fluctuating picture had been
applied in10,11 and it is used in this paper to interpret the
polarized SANS measurements conducted for the spin fluc-
tuations in MnSi.

In the following sections, we demonstrate in more detail
than in our earlier works10,11 that existing experimental data
are in good qualitative agreement with conventional mean-
field results presented in Ref. 10 which catches principal
symmetry features of the problem. It was shown in Ref. 10
that the randomly oriented left-handed chiral spin fluctua-
tions persist above Tc. Due to AEI these fluctuations increase
strongly along the easy directions �111� only and are sup-
pressed in other directions. The correlation length of fluctua-
tions along �111� obeys the scaling law with the correspond-
ing critical exponent equals to �=0.62�1�. In the subsequent
paper11 the critical exponent of the correlation length has
been determined over a wider temperature range than in Ref.
10 �two decades on � scale� and the obtained value is given
by �=0.68�3�. According to both papers10,11 �see also Sec. II�
the AEI plays a significant role around the easy directions
only and detailed study of the critical fluctuations in this
region can clarify the real nature of the phase transition,
which apparently cannot be done by macroscopic measure-
ments. Indeed, in case of macroscopic or poorly resolved
neutron-scattering measurements the critical fluctuations
from the whole momentum space contributes to the mea-
sured quantities and therefore smears out anisotropic features
of the problem.
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We have revised the data from the previous paper11 and
present the additionally collected ones. The combined set of
the scans in the easy direction taken from two different
samples shows that the scaling law for the inverse correlation
length undergoes a crossover at ��k. The critical exponent
close to Tc is �1=0.40�6� and changes to �2=0.68�1� at high
temperatures. The susceptibility at Q �k displays a similar
crossover. This crossover is a transition to the pure chiral
fluctuating phase near Tc reported in.14 Using neutron spin
echo �NSE� measurements we study the critical dynamic of
MnSi along the easy direction. It is shown that the relaxation
rate of the critical fluctuations � measured at �q�= �Q−k�
reveals a behavior that is compatible with the dynamic scal-
ing assumptions. The scaling law at q�� obeys ���Z

��Z� and undergoes a crossover at the same temperature as
for the above-mentioned static data, with Z1=2.5�1� for the
high � and Z2=1.10�4� close to Tc. For q��	k we found
��q5/2 as in ferromagnets in agreement with the predicted
crossover.

Thus, we demonstrate that the magnetic phase transition
in MnSi displays two crossovers and three different regimes
of the critical fluctuations in agreement with the hierarchy of
the interactions in the Bak-Jensen model. First, one observes
the ferromagnetic such as fluctuations at high T, which are
well distributed over the whole Q space. Then—with de-
creasing T—the DMI localizes them in the spherical layer
with radius Q=k and thickness �. At even lower tempera-
tures T, the layer thickness decreases along the easy direc-
tions, while in all other directions it remains finite.

Moreover, our theoretical picture based on the helix fluc-
tuation mean-field theory explains the origin of this cross-
over into the purely chiral critical region. Therefore, we do
not see any feature of experimental data which would dis-
agree with this approach and demand the skirmion assump-
tion. The above-mentioned assumption is based on observa-
tion that chiral part of the scattering just above Tc was not
described by Eq. �4� in Ref. 14 which was derived in the
mean-field approximation.10 It is not surprising as soon as
this approximation cannot give quantitative predictions in the
very vicinity of the transition temperature. Yet, the deviation
of the experimental data from the predictions of the MF
theory does not exceed 10%. At the same time the skyrmion
theory, at least in its present form, does not give any predic-
tions on the susceptibility or neutron cross section,17 which
could be verified experimentally. Hence we cannot share the
belief to the observation of the skirmionic fluctuating state. It
was also claimed in18 that the long-range skirmionic order
was observed in narrow range of the magnetic field below Tc
�A phase�. We do not think that there is any connection of
this reported high-field phase below Tc with the zero-field
critical fluctuations above Tc.

The outline of this paper is the following: the essence of
the theory for the critical spin fluctuations in MnSi and re-
lated compounds is given in Sec. II. The results of the polar-
ized SANS experiments demonstrating the crossover in the
inverse correlation length, susceptibility and chirality behav-
ior are presented in Sec. III. In Sec. IV we show the results
of the paramagnetic NSE experiment, which gives the time
relaxation of the critical fluctuations in the same temperature
range. Sec. V presents the discussion and the concluding
remarks.

II. THEORETICAL BACKGROUND

For a better understanding and interpretation of the ex-
perimental data presented below we outline here the princi-
pal theoretical results obtained in Ref. 10 and explain the
physical origin of the observed crossovers. A theoretical de-
scription of the helical fluctuations within the paramagnetic
phase starts with the bilinear part of the free-energy density
which is given by15

W�Q� = 	B

2
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where the first, second, and third term correspond to the iso-
tropic exchange, the DMI, and the AEI, respectively. The
exchange constant B is the spin-wave stiffness at T=0 �noti-
fied as A in Ref. 19� and we assume B�Da�F, where a is
the lattice spacing. Neglecting DMI and AEI terms we get a
conventional mean-field expression for the ferromagnetic
free-energy. The corresponding susceptibility, �F�Q�, is
given by well known expression
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FIG. 1. �Color online� Isotropic, �I, and chiral, �Ch, parts of
susceptibility �6� and the sum, ���=���I�2+ ��Ch�2, for two limiting
cases: �a� �1�k and �b� �1�k.
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where �0
2= �C /a2��T−Tc0

�, C�1 /Tc0
, and Tc0

is the ferro-
magnetic transition temperature.

In the real space we have

���
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r
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and parameter �0 can be interpreted as the inverse correlation
length of the ferromagnetic fluctuations.

As was shown in Ref. 10 the second and third terms in
Eq. �1� lead to the more complex expression for the
susceptibility

����Q� =
T�Q2 + k2 + �1

2�
�� − 2ik�D/�D�����Q� − 4k2Q�Q�/�Q2 + k2 + �1
2��
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2��Q − k�2 + �1

2� − 4�F/B�k2Q4�Q̂4�/�Q2 + k2 + �1
2��

, �4�

where higher-order terms of �F /B� were omitted, k= �D� /B is
the helix wave vector at T�Tc,

15,19 �1
2=�0

2−k2= �C /a2��T
−Tc1

�. The parameter �1 is a renormalized inverse correlation
length, which interpretation is not trivial since it has to be
compared to another natural scaling parameter k=2� /d. The
transition temperature Tc1

is also renormalized by DMI and it
appears that presence of DMI increases the ordering tem-
perature

Tc1
= Tc0

+
k2a2

C
. �5�

In the last term of the denominator �Q̂4�= �Qx
4+Qy

4+Qz
4� /Q4

is a cubic invariant. It describes the effect of AEI and links
the critical fluctuations to the cubic principal axes. The sus-
ceptibility ��� consists of three parts: the first term in Eq. �4�
describes isotropic spin fluctuations as in ferromagnets above
Tc. The second term stems from the chiral fluctuations driven
by isotropic DMI and the last term gives longitudinal fluc-
tuations along the momentum Q. The first two parts were
used in Refs. 10 and 11 for an explanation of the polarized
SANS experiments. The last longitudinal term �L�Q� is im-
portant for neutron magnetic scattering close to the nuclear
Bragg reflections.

The corresponding expression for the small-angle
polarized-neutron cross section is given by

d�

d�
=

2r2T

B

Q2 + k2 + �1
2 + 2k�D/�D���Q · P0�

�Q + k�2 + �1
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where r=5.410−13 cm and

�A
2�Q� = −

4FQ4�Q̂4�
B�Q2 + k2 + �1

2�
. �7�

In MnSi the �A term determines the scattering behavior in
small regions around the cubic diagonals only �see below�.10

Neglecting the last term in the denominator we get critical
fluctuations that are maximal at the sphere Q=k with the
width �1�T−Tc1

in contradiction to the conventional critical

behavior, where fluctuations are maximal at the point corre-
sponding to the wave vector of the magnetic structure below
Tc. This unusual shape of the scattering intensity was ob-
served in Refs. 3, 10, and 11. However, if �1�k one can
neglect k in Eq. �4� and ��Q� acquires the conventional fer-
romagnetic form Eq. �2�� with �0→�1 and weak correc-
tions. This crossover can be seen easily in real space since it
occurs due to competition of two scales: inverse correlation
length 1 /�1 and the helix pitch 2� /k as well as nontrivial
symmetry of the fluctuations. To illustrate this point it is
instructive to consider the susceptibility in real space, where
instead of Eq. �3�, we get the following expressions for the
isotropic, the chiral, and the longitudinal parts of the suscep-
tibility

���
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r
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��,

���
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����

1

r
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+ e−r�k2+�1
2
 , �8�

where r̂�=r� /r.
When r→0, the isotropic part displays a 1 /r singularity,

while the other parts remain finite for instance ��Ch�
=Tk / �4�B��. The expressions in Eq. �8� should be consid-
ered in two limiting cases: �i� �1�k realized at high tem-
peratures and �ii� �1�k close to Tc1

. The isotropic and chiral
susceptibilities for these two cases are sketched on Fig. 1. To
plot the chiral susceptibility we used a negative value for the
Dzyaloshinskii constant, D, as it is well established for
MnSi.20,21 In case �i� due to the exponential factor exp�
−�1r�, which decreases rapidly when �1r is larger than one,
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we have kr�1 and the isotropic part of the susceptibility has
the form given by Eq. �3� with replacing �→�1 and with
only a small correction proportional to exp�−�1r�k2 /�1. The
other parts of the susceptibility, �Ch and �L, are small. For
example, we find �Ch�k exp−�1r. Hence, we have ferromag-
netic type of fluctuations. It is well seen in Fig. 1�a�, that the
isotropic correlations dominate over the chiral for r�1 /�1,
while they all are strongly dumped for r�1 /�1. The chiral
susceptibility, �Ch, has no extrema at r�1 /�1 and is minimal
at r=0. This leads to the situation, when the left twist of the
helix fluctuations have a weak diffuse character: they are all
left handed, but with poorly defined helix period.

The crossover occurs around �1�k and the critical re-
gime fully develops for �1�k see Fig. 1�b��. In this case for
the very short distances r��1 /k2 the isotropic part �I domi-
nates over �Ch and �L due to the 1 /r singularity, while for the
larger r, �1 /k2�r�1 /�1, the k /�1 terms in Eq. �8� become
significant and the chiral and longitudinal parts of the sus-
ceptibility are of the order of �I.

There are two important points on the r scale: �i� when the
amplitudes of �I and �Ch are equal, which fixes the value
kr�� /2 and �ii� when �I=0 corresponding to the value kr
�� see Fig. 1�b��. The first point corresponds to the situa-
tion, when the modulus of the chiral susceptibility, ��Ch�, has
a maximum at a certain r. The � /2 twist of the helix fluc-
tuations gets locked-in on the distance of a quarter of the
helix period r=d /4. This lock-in of the twist for all �
�2k /� has two important consequences such as the well
established maximum in scattering at Q=k �the ring of scat-
tering� and simultaneously purely chiral fluctuations. Both
facts are caused by the minimum in ��Ch�r�� at r�d /4. They
have been observed for the first time in Ref. 10 and they
were misinterpreted in Refs. 14 and 17 as a signature of a
skyrmion phase in contrast to the present interpretation.

The second r point is associated with transformation of
the moduli ��� from the “high” susceptibility region with kr
�� /2 and �I��Ch�T / �4B�k2 /�1 to the “low” susceptibil-
ity region with kr=�n where n is integer and �I��Ch

�T / �4B�k2 /�1�1 /�n�. The physical interpretation of the
second point is the following: the probability of fluctuations
with r�k /� is much higher than of those with r�k /�.
Therefore, the number of “short” wave fluctuations is bigger
than the number of “long” wave ones and the average corre-
lation length on approaching Tc from high T has to saturate
around the value of r=� /k.

In the consideration above we have neglected the AEI,
although anisotropy is taken into account and the F term in
the denominator in Eq. �4� determines the easy directions.

According to Ref. 15 the invariant �Q̂4� has two extrema
equal to 1 and 1/3 for Q along the �100� and �111� direc-
tions, respectively. As a result, the cubic edge and diagonal
are the easy directions for positive and negative F, respec-
tively. In the case of MnSi we have F�0 and the denomi-
nator at �Q−k��k and �1�k is given by10

Z = 4Bk2�Q − k�2 + �2 + ��F�k2/2B���Q̂4� − 1/3�� , �9�

where �2=�1
2+ �F�k2 /6B= �C /a2��T−Tc� and Tc=Tc1

− �F��ka�2 / �6BC��Tc1
is the mean-field transition tempera-

ture. Near the minimum we have �Q̂4�−1 /3�8�2 /9
+3�2 /2, where � and � are spherical angles in the frame
with z axis along the cubic diagonal.22 Hence at �Q−k�2

� ��F�k2 /B� and � ,��1 we have 3D critical fluctuations
peaked along cubic diagonals. Thus, the AEI restores con-
ventional behavior of the critical fluctuations in the very vi-
cinity of the transition. It follows from Eq. �9� that the cor-
relation length

��Q� = �2 + ��F�k2/2B���Q̂4� − 1/3��−1/2 = �2 + �A
2�Q��−1/2,

�10�

depends now on Q direction determined by �Q̂4�
=sin4 ��cos4 �+sin4 ��+cos4 �, where � and � are spheri-
cal angles in cubic coordinate frame with z axis along
�0,0,1�. As a result at T=Tc we have �
=�2B / �F��� ,�6,�3 /2� for the �111�, �110�, and �001� direc-
tions, respectively.

The expression for the scattering cross section in Eq. �6�
catches the main symmetry features of the problem, takes
into account all interactions mentioned above, and explains
qualitatively the previous data10,11 as well as ones presented
below. Remarkable features of Eq. �6� read as follows.

�i� For the unpolarized neutrons the scattering intensity is
localized on a sphere with radius Q=k and around the sharp
maxima of the cubic diagonals.

�ii� For completely polarized neutrons �P0=1� the scatter-
ing intensity depends on the angle � between vectors Q and
P0 as well as the sign of D / �D�, which determines the hand-
edness of the chiral fluctuations: If D / �D��0 and D / �D�
�0 we have right-handed �clockwise� and left-handed
�counterclockwise� fluctuations, respectively �cf. Ref. 21�.
For positive and negative signs the scattering intensity is
maximal at P0↓ ↑Q and P0↑ ↑Q, respectively. In both cases
the intensity appears as half-rings. This pattern was observed
in Ref. 10 and 11 and corresponds to the negative sign in
agreement with the data in Ref. 21 obtained below Tc.

�iii� The AEI restores the conventional form of the critical
fluctuations peaked along �111� �MnSi� or �001� �FeGe�.
However, their exact form and dependence on �= �T
−Tc� /Tc demands further theoretical and experimental work.

As a result we distinguish three �T ,Q� regions:
�i� Q	��T��k, where the mean-field fluctuations have a

conventional form and one can expect the ferromagnetic
critical behavior �see for example Ref. 23�.

�ii� In a rather narrow region �Q−k�	��T� and apart from
the easy directions one can expect a crossover to quasi-one-
dimensional critical behavior at ��k.

�iii� There is strong anisotropy in Q space with three-
dimensional critical regime along the easy directions �111�
or �001� when � ,��1.

One can expect that the critical dynamics in region �i�
�Q����A� are of ferromagnetic nature in agreement with
results presented in Sec. IV. In region �ii� the critical slowing
down has to be restricted first by the DMI at ��k showing
the first crossover. The second crossover has to be in the easy
directions near Tc and the critical slowing down can survive
along the cubic diagonals only. It should be noted also that
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our results obtained for the easy directions are in favor of a
second-order transition.

It should be noted that the complex temperature behavior
above Tc of the macroscopically measured quantities such as
specific heat, conductivity, and the sound propagation12,13 is
in a qualitative agreement with the three region behavior
discussed above. However, the mean-field theory presented
above cannot give the correct values of the critical exponents
for the susceptibility and correlation length, etc. The corre-
sponding theoretical work has not been done yet except for
the very first step in this direction done in Ref. 24, where
strong renormalization of the chiral susceptibility was dem-
onstrated. Nevertheless, we show that the mean-field theory
presented above describes all experimental features of the
thermal phase transition in MnSi at least on the qualititative
level.

III. SMALL ANGLE POLARIZED NEUTRON SCATTERING

We have performed polarized SANS measurements on
two single crystals of MnSi at the SANS-2 facility in Geest-
hacht �Germany�. The two different samples, sample 1 and
sample 2, the same as in Refs. 10 and 11, respectively, were
used for the measurements. Two temperature scans of sample
1 and one scan of sample 2 were used to verify reproducibil-
ity of the results. The beam of polarized neutrons �P0
=0.95� was exploited at a wavelength �=0.58 nm. The scat-
tered neutrons were detected with a 2D position sensitive
detector. The temperature stabilization was better than 0.05
K.

The scattering images for two different temperatures are
given in Fig. 2. The diffuse scattering intensity just above Tc
looks like half-moons oriented along the incident neutron
polarization Fig. 2�a��. The sum of the intensities of two
opposite polarizations form an anisotropic ring with weak
spots, which below Tc transforms into the Bragg peaks, while
the ring disappears. Upon increase in the temperature the
half-moon shaped images are smeared Fig. 2�b��. The asym-
metric P-dependent scattering is a fingerprint of the single
spin chirality, so the DMI is responsible for the spiral order-

ing seems to be powerful enough in the whole critical range
and has the single sign in the whole sample. This picture of
scattering is in good agreement with the theory given in Sec.
II and in Ref. 10.

The longitudinal q scan along the easy axes �111� for
different temperatures above Tc measured with unpolarized
neutrons are shown in Fig. 3. These scans are well described
by the Lorentzian of the form C / �Q−k�2+�2� with the cen-
ter at Q=k�0.4 nm−1 for all the data taken above Tc. For
the Bragg peaks taken below Tc these curves transform to
Gaussian with the constant full width at half maximum
�FWHM� �of order of 0.08 nm−1� corresponding to the in-
strumental resolution. The critical temperature was experi-
mentally found to be Tc=28.80�7� K for sample 1 and Tc
=29.05�5� K for sample 2 as the point, where the transfor-
mation from Lorentzian shape to Gaussian shape occurs.

The Lorentzian parameters the amplitude is proportional
to the susceptibility at the Bragg point, ��q=0� where q
= �Q−k�, and FWHM proportional to the inverse correlation
length �−1=�� were obtained from the fit. Their dependencies
for three temperature scans are presented in Fig. 4 as a func-
tion of the reduced temperature in log-log scale.

The scaling laws of these two parameters exhibit a cross-
over at ��0.02 where ��0.75k. The corresponding values
are �1=0.65�3� and �1=0.40�6� in the vicinity of Tc and �2
=1.61�2� and �2=0.68�1� for higher temperatures at �
�0.75k.

It is convenient sometimes to determine the so-called po-
larization of the scattering as

Ps�Q� =
��P0� − ��− P0�
��P0� + ��− P0�

= −
2kQP0 cos �

Q2 + k2 + �2 , �11�

where � is the angle between P0 and Q and we take Eq. �6�
to estimate its value using parameters Q ,k and �. The tem-
perature dependence of the polarization Ps�Q=k� is shown in
the inset of Fig. 4. As it is well seen and was also noted in
Ref. 10 and 14, the polarization is close to 1 in the range 1–2
degrees above Tc, showing pure chiral fluctuating state
within this range. This range is well correlated with the
crossover behavior of ��q=0� and �. This pure chiral phase
can be explained by the lock-in process occurring as soon as

P0

P0

P0

P0

a

b

FIG. 2. �Color online� SANS maps of the critical scattering in
MnSi at �= �T−Tc� /Tc=0.007 �a� and �=0.042 �b� for two opposite
polarization directions P0.
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� becomes comparable with k. We would like to warn about
the complex form of the correlation functions in MnSi see
Eq. �8�� and not trivial interpretation of the obtained numbers
such as �. Moreover, it must be noted that experimentally
obtained value of � shown in Fig. 4�b� is referred to the one
in the denominator of Eq. �6�, while the value of � involved
in Eq. �10� is referred to the one in the numerator of Eq. �6�.
Although this is the same value in the mean-field theory,
these two values � may be different from the experimental
point of view. One can refer to Ref. 25, where the chiral and
conventional parts of the susceptibility were extracted using
the manipulations with the cross sections of the polarized
neutrons as polarization dependent part and polarization in-
dependent part. The former is attributed to the pure chirality
with the chiral susceptibility and the latter is attributed to the
trivial nonchiral susceptibility. In our case this approach can
shed an additional light onto the problem.

In this system the period of the helix structure d=2� /k
�16 nm is a scale where the isotropic exchange and DMI
are of the same order.10,15 The noncollinearity of the spin
fluctuations is important close to the transition, where 2��
�d. It reveals itself through the well-resolved half-moons in
Fig. 2�a�. On the other hand, if q or ��k this noncollinearity
is inessential what leads to smearing of half-moons �Fig.
2�b��. In this case the nature of the fluctuations has to be the
same as in conventional ferromagnets. Indeed, in high T re-
gion we have the exponent ��2 /3 like in ferromagnets �see
also detailed discussion in Sec. II�.

It is worthwhile to note that the critical exponent of the
order parameter �=0.22�1�.10 Moreover, the same values of
the critical exponents have been found for the relative sys-

tems. Particularly, �=0.22�1� and �=0.48�5� found in
Fe0.85Co0.15Si,26 suggest that these critical indexes are uni-
versal for the cubic magnets with the DMI. The scaling re-
lation between the indexes �+2�=3� is well satisfied within
the error bars for both temperature regions, i.e., close to Tc
for the helixlike region and for the ferromagnetic like one,
i.e., well above Tc. It may be considered as an evidence of
the second-order transition summoned by small critical Q
regions around easy �111� directions.

IV. NEUTRON SPIN ECHO

We have used the paramagnetic NSE technique to study
the critical dynamics in MnSi.27 The experiments were per-
formed on the spin echo spectrometer IN11 at ILL, Grenoble
�France� at the incoming neutrons wavelength �0=0.65 nm
and for Q values 0.2÷0.6 nm−1. The results were supple-
mented by measurements at the wide angle NSE spectrom-
eter SPAN at Helmholtz Zentrum für Materialen und Ener-
gie, Berlin �Germany� at �0=0.45 and 0.65 nm in the same Q
range. The temperature stabilization accuracy was �T
=0.01 K. All NSE spectra were normalized by the resolution
function of the spectrometers, determined at T=2 K well
below Tc, where there is no inelastic contribution to the spin-
echo signal visible by this technique. It is worthwhile to
point out that the quasielastic part of the spectrum observed
by the spin echo is seen just above of Tc only. The elastic
signal dominates below Tc and inelasticity increases strongly
with growing T. The measurements were performed with Q
along two directions in the reciprocal space: 111� and 110�.

The temperature evolution of the normalized intermediate
scattering function S�q , t� is shown for Q � 111� �q=0� in
Fig. 5. A similar data set for �=0.007 and for different q
values is shown in Fig. 6. The spectra span a dynamic range
of three orders of magnitude and the dynamics of the helical
fluctuations lie within the NSE window.

The data were fitted using the exponential decay
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FIG. 4. �Color online� The Lorentzian amplitude and the inverse
correlation length versus reduced temperature �= �T−Tc� /Tc for
Q � 111�. The inset shows the temperature dependence of polariza-
tion defined by Eq. �11�.
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S�q,t� = y0 + A exp�−
t

�0
� , �12�

where �0 is the relaxation time of the critical fluctuations, y0
is the elastic background, and A is the scaling factor. The
solid lines are the best least square fits to the data of an
exponential decay �12�. The background value y0 is negli-
gible for the entire temperature range, when Q�”111� or q
�0, i.e., far enough from the Bragg point. However, y0 sig-
nificantly increases when the temperature decrease for
Q � 111� orientation and small q values, i.e., close to the
Bragg point. Apparently it can be associated with the first-
order transition,12 when the elastic contamination to the sig-
nal occurs in the close vicinity of Tc. The relaxation rate was
obtained from these fits using the relation � eV�
=1.317 /�0ns�.28

The momentum transfer dependence of the relaxation rate
� is plotted in Fig. 7 for T=29, 31, and 33 K. It is important
to note that one has to use the reduced momentum transfer

q=Q−k. The obtained values of � are combined with those
available from the paper of Ishikawa.29 The data at T
=29 K � squares� saturates at small q and follow q5/2 scaling
law at q�0.07 nm−1. The triangles representing our data at
T=31 K, in combination with the data from Ref. 29, show
the similar behavior. Hence, both data sets: squares at T
=29 K and symbols at T=31 K have a tendency to ap-
proach black dashed lines �see Fig. 7�, representing the dy-
namic scaling law ��q5/2 for large q values similar to that
in ferromagnets.23 As it is also expected from the dynamical
scaling theory, � has to saturate in the range q�� due to
violation the total spin conservation law by the DMI. The
values of � for T=29 and 31 K are pointed by arrows in Fig.
7. Hence it is not surprising that for T=33 K, � does not
change within the range of the measured momentum transfer
q�0.2 nm−1. This shows that the correlation length �=�−1

is an effective parameter in the dynamics of the fluctuations
limiting the lowest energy by the value of ���� similar to
those observed in Fe �see for example, Fig. 2 in Ref. 27�.

The temperature dependences of the relaxation rate � for
different q smaller than � and q�� are shown in Fig. 8. For
the large q �circles� the value of � does not change with the
temperature demonstrating that it depends solely on q. For
the small q it seems to be determined by the value of � and
becomes independent of T at very small � where q�� , ��
�0.017�.

In spite of obvious lack of the experimental points to de-
termine a law for the temperature change in � we took a risk
to fit the data at small q and at large temperatures ��
�0.017� to the power law ���Z�, that gives the value of
Z��1.8�2�. To better see the relation between ��q=0� and �
we plot the one versus another in the log-log scale in Fig. 9.
The dependence of line width, �, on the inverse correlation
length, �, exhibits the scaling law �=A�Z with the crossover
from �i� Z=2.49�9� for large � �large T� to �ii� Z=1.10�4� for
small � �close to Tc�. It holds approximately at the same � as
the crossover in � and � behavior �Fig. 3�. Finally, we con-
clude that the relaxation rate changes strongly with tempera-
ture at ��0.025 obeying the scaling law with ��q=0�
��Z2 ��Z2�2 with Z2=2.5�1� and �2=0.69�3�. Then ��q=0�
has a crossover to the regime at ��0.025 obeying a scaling
law with ��q=0���Z1 ��Z1�1 with Z1=1.10�4� and �1
=0.38�5�.
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The critical dynamics of MnSi had been studied using
triple axis neutron spectrometry by Ishikawa et al.,6,29 where
the magnetic system of MnSi was considered as an example
of the weak itinerant ferromagnet. Contrary to the predic-
tions of the dynamic scaling theory confirmed experimen-
tally for itinerant Fe, Co, and Ni as well as dielectric EuO
and EuS �see Ref. 23 and references therein� giving the criti-
cal fluctuation’s line width by

� = A0q5/2f��/q� , �13�

the authors in Ref. 29 interpreted the obtained data in terms
of the itinerant magnet theory with the line width given by29

� = A1q�q2 + �2� . �14�

Both theories Eqs. �13� and �14�� give very similar values
for the line width in the large q range �q��� proportional to
q5/2 and q3, respectively. Therefore, the � values obtained at
large q region could fit to both theories. The significant dif-
ference occurs in the small q range �q���. Here for the
itinerant model the line width depends linearly on q. In the
dynamical scaling theory it is proportional to q2�1/2, due to
the total spin conservation requirements in the exchange ap-
proximation.

However, both theories hold for the ferromagnets when
q=Q, but not for helimagnets, when q=Q−k. Therefore,
they can be applied to P213 helimagnets only in the large-q
region, where q�k and the DMI may be neglected. At
present there is no theory of the critical dynamics of the
P213 magnets for the range q!k. Our experimental data
taken for small-q range show no q dependence of � at q
�� and � depends only on q at q�� as ��q5/2. The former
may be explained by the violation of the total spin conserva-
tion low due to presence of DMI. The latter well corresponds
to the ferromagnetic scaling behavior23 as soon as the DMI is
neglected. At q!��T�!k a scaling behavior should be ex-
pected, where ���, both change slowly with temperature.

V. CONCLUSIONS AND REMARKS

We report on the crossover in the critical behavior in
MnSi from high T ferromagnetic like fluctuations to the close

to Tc helixlike regime. The crossover is associated with an
influence of the DMI, responsible for the chiral ordering: it
dominates close to Tc and weakens for higher temperatures.

�i� We present the essence of a theory describing the po-
larized neutron critical scattering in the helimagnet MnSi and
similar compounds. The theory is based on the hierarchical
Bak-Jensen model of the three interactions �FE, DMI, and
AEI� and it predicts the appearance of three ranges in the
critical scattering. A ferromagnetic like regime occurs in the
high-T limit, where DMI and AEI may be neglected. The
intermediate region, where the DMI becomes important, is
characterized by critical fluctuations localized on the spheri-
cal surface at Q=k. The crossover in the susceptibility ��r�
between these two regions is examined. It was demonstrated
that the critical fluctuations in the second region have a very
unusual form. Close to the transition the anisotropic ex-
change interaction restores conventional three-dimensional
form of the critical fluctuations in rather narrow regions near
easy �111� directions, where the magnetic Bragg peaks ap-
pear below the transition.

�ii� The inverse correlation length � and the susceptibility
� were measured in the easy direction using polarized neu-
tron scattering �SANS�. The temperature dependences of
both quantities demonstrate the crossover at ��0.02 where
��k. In the vicinity of Tc the critical exponents of the sus-
ceptibility � and � are equal �1=0.65�3� and �1=0.40�6�,
respectively, whereas at higher T ���k�, �2=1.61�2� and
�2=0.68�1�. We argue that the crossover, revealed in the
change in indexes for � and � at ��k, is compatible with the
theory mentioned above: the short-range correlations reveal
their ferromagnetic like nature, while the long-range correla-
tions along the easy directions have the helixlike nature with
strong influence of both DMI and AEI.

�iii� The relaxation rate � of the critical fluctuations along
the easy direction was measured in the range of small q
=Q−k. This q region is easily accessible for the NSE tech-
nique and difficult for the triple axis spectroscopy due to the
resolution restrictions. It is also shown that the critical dy-
namics are compatible with the general form of the dynami-
cal scaling theory Eq. �13� and undergoes a crossover from a
high-temperature ferromagnetic like regime with the critical
exponent Z2=2.5�1� to a helixlike regime with Z1=1.10�4�
close to Tc. The applicability of the dynamical scaling theory
for q�� is not surprising accounting for the ferromagnetic
nature of the fluctuations at relatively high temperatures. We
argue that the form of the dynamical scaling, which appears
very close to Tc where ��k, is determined by the DMI and
AEI. We point out that the dynamical and static crossovers to
behavior are best pronounced along the easy �111� directions
only. In other directions the critical fluctuations demonstrate
behavior compatible with a first-order transition to the long-
range helical state.

�iv� We belive that the mean-field theory and the neutron
cross section calculated on its basis Eq. �6�� explains at least
qualitatively existing experimental neutron scattering data
for MnSi.3,10,11 We insist that our theory is the real alterna-
tive to the skyrmion assumption that was proposed in Ref. 17
and used in Ref. 14 to explain the experimental results close
to Tc. To our opinion the use of the skirmionic assumpsion is
especially counterproductive in view that the authors of Ref.

0.001

0.01
�
��

�
�
�

0.1 2x10
-1 3 4 5 6 7

� � � �
� �
�

Z1=2.49(9)

Z2=1.10(4)

FIG. 9. �Color online� The log-log plot of the relaxation rate
��q=0� versus the corresponding inverse correlation length, �,
taken through the whole critical temperatures. Solid lines are the
best least square fit with power law.
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17 gave no detailed predictions or evaluations for suscepti-
bility and the neutron cross section.
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